Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Biomedicines ; 11(5)2023 Apr 25.
Article in English | MEDLINE | ID: covidwho-20240523

ABSTRACT

COVID-19 brought about the mRNA vaccine and a paradigm shift to a new mode of treating and preventing diseases. Synthetic RNA products are a low-cost solution based on a novel method of using nucleosides to act as an innate medicine factory with unlimited therapeutic possibilities. In addition to the common perception of vaccines preventing infections, the newer applications of RNA therapies include preventing autoimmune disorders, such as diabetes, Parkinson's disease, Alzheimer's disease, and Down syndrome; now, we can deliver monoclonal antibodies, hormones, cytokines, and other complex proteins, reducing the manufacturing hurdles associated with these products. Newer PCR technology removes the need for the bacterial expression of DNA, making mRNA a truly synthetic product. AI-driven product design expands the applications of mRNA technology to repurpose therapeutic proteins and test their safety and efficacy quickly. As the industry focuses on mRNA, many novel opportunities will arise, as hundreds of products under development will bring new perspectives based on this significant paradigm shift-finding newer solutions to existing challenges in healthcare.

2.
Biotechnol Prog ; 39(2): e3321, 2023 03.
Article in English | MEDLINE | ID: covidwho-2296459

ABSTRACT

The COVID-19 pandemic has placed unprecedented pressure on biopharmaceutical companies to develop efficacious preventative and therapeutic treatments, which is unlikely to abate in the coming years. The importance of fast progress to clinical evaluation for treatments, which tackle unmet medical needs puts strain on traditional product development timelines, which can take years from start to finish. Although previous work has been successful in reducing phase 1 timelines for recombinant antibodies, through utilization of the latest technological advances and acceptance of greater business risk or costs, substantially faster development is likely achievable without increased risk to patients during initial clinical evaluation. To optimize lessons learned from the pandemic and maximize multi-stakeholder (i.e., patients, clinicians, companies, regulatory agencies) benefit, we conducted an industry wide benchmarking survey in September/October 2021. The aims of this survey were to: (i) benchmark current technical practices of key process and product development activities related to manufacturing of therapeutic proteins, (ii) understand the impact of changes implemented in COVID-19 accelerated Ab programs, and whether any such changes can be retained as part of sustainable long-term business practices and (iii) understand whether any accelerative action(s) taken have (negatively) impacted the wider development process. This article provides an in-depth analysis of this data, ultimately highlighting an industry perspective of how biopharmaceutical companies can sustainably adopt new approaches to therapeutic protein development and production.


Subject(s)
Biological Products , COVID-19 , Humans , Drug Industry , Biological Products/therapeutic use , Pandemics/prevention & control , Workflow
3.
Front Immunol ; 13: 1084331, 2022.
Article in English | MEDLINE | ID: covidwho-2242642

ABSTRACT

SARS coronavirus 2 (SARS-CoV-2) invades the human body by binding to major receptors such as ACE2 via its S-spike protein, so the interaction of receptor-binding sites has been a hot topic in the development of coronavirus drugs. At present, the clinical progress in monoclonal antibody therapy that occurred early in the pandemic is gradually showing signs of slowing. While recombinant soluble ACE2, as an alternative therapy, has been modified by many engineering methods, both the safety and functional aspects are approaching maturity, and this therapy shows great potential for broadly neutralizing coronaviruses, but its progress in clinical development remains stalled. Therefore, there are still several key problems to be considered and solved for recombinant soluble ACE2 to be approved as a clinical treatment as soon as possible.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , SARS-CoV-2 , Humans , Carrier Proteins , Recombinant Proteins
4.
J Genet Eng Biotechnol ; 20(1): 98, 2022 Jul 06.
Article in English | MEDLINE | ID: covidwho-1923613

ABSTRACT

BACKGROUND: The baculovirus expression vector system has been developed for expressing a wide range of proteins, including enzymes, glycoproteins, recombinant viruses, and vaccines. The availability of the SARS-CoV-2 genome sequence has enabled the synthesis of SARS-CoV2 proteins in a baculovirus-insect cell platform for various applications. The most cloned SARS-CoV-2 protein is the spike protein, which plays a critical role in SARS-CoV-2 infection. It is available in its whole length or as subunits like S1 or the receptor-binding domain (RBD). Non-structural proteins (Nsps), another recombinant SARS-CoV-2 protein generated by the baculovirus expression vector system (BEV), are used in the identification of new medications or the repurposing of existing therapies for the treatment of COVID-19. Non-SARS-CoV-2 proteins generated by BEV for SARS-CoV-2 diagnosis or treatment include moloney murine leukemia virus reverse transcriptase (MMLVRT), angiotensin converting enzyme 2 (ACE2), therapeutic proteins, and recombinant antibodies. The recombinant proteins were modified to boost the yield or to stabilize the protein. CONCLUSION: This review covers the wide application of the recombinant protein produced using the baculovirus expression technology for COVID-19 research. A lot of improvements have been made to produce functional proteins with high yields. However, there is still room for improvement and there are parts of this field of research that have not been investigated yet.

5.
Inorganics (Basel) ; 9(11)2021 Nov.
Article in English | MEDLINE | ID: covidwho-1534098

ABSTRACT

The heme protein cytochrome c (Cyt c) plays pivotal roles in cellular life and death processes. In the respiratory chain of mitochondria, it serves as an electron transfer protein, contributing to the proliferation of healthy cells. In the cell cytoplasm, it activates intrinsic apoptosis to terminate damaged cells. Insight into these mechanisms and the associated physicochemical properties and biomolecular interactions of Cyt c informs on the anticancer therapeutic potential of the protein, especially in its ability to subvert the current limitations of small molecule-based chemotherapy. In this review, we explore the development of Cyt c as an anticancer drug by identifying cancer types that would be receptive to the cytotoxicity of the protein and factors that can be finetuned to enhance its apoptotic potency. To this end, some information is obtained by characterizing known drugs that operate, in part, by triggering Cyt c induced apoptosis. The application of different smart drug delivery systems is surveyed to highlight important features for maintaining Cyt c stability and activity and improving its specificity for cancer cells and high drug payload release while recognizing the continuing limitations. This work serves to elucidate on the optimization of the strategies to translate Cyt c to the clinical market.

6.
Front Plant Sci ; 12: 650820, 2021.
Article in English | MEDLINE | ID: covidwho-1201481

ABSTRACT

The increase in the world population, the advent of new infections and health issues, and the scarcity of natural biological products have spotlighted the importance of recombinant protein technology and its large-scale production in a cost-effective manner. Microalgae have become a significant promising platform with the potential to meet the increasing demand for recombinant proteins and other biologicals. Microalgae are safe organisms that can grow rapidly and are easily cultivated with basic nutrient requirements. Although continuous efforts have led to considerable progress in the algae genetic engineering field, there are still many hurdles to overcome before these microorganisms emerge as a mature expression system. Hence, there is a need to develop efficient expression approaches to exploit microalgae for the production of recombinant proteins at convenient yields. This study aimed to test the ability of the DNA geminiviral vector with Rep-mediated replication to transiently express recombinant proteins in the freshwater microalgal species Chlamydomonas reinhardtii and Chlorella vulgaris using Agrobacterium-mediated transformation. The SARS-CoV-2 receptor binding domain (RBD) and basic fibroblast growth factor (bFGF) are representative antigen proteins and growth factor proteins, respectively, that were subcloned in a geminiviral vector and were used for nuclear transformation to transiently express these proteins in C. reinhardtii and C. vulgaris. The results showed that the geminiviral vector allowed the expression of both recombinant proteins in both algal species, with yields at 48 h posttransformation of up to 1.14 µg/g RBD and 1.61 ng/g FGF in C. vulgaris and 1.61 µg/g RBD and 1.025 ng/g FGF in C. reinhardtii. Thus, this study provides a proof of concept for the use of DNA viral vectors for the simple, rapid, and efficient production of recombinant proteins that repress the difficulties faced in the genetic transformation of these unicellular green microalgae. This concept opens an avenue to explore and optimize green microalgae as an ideal economically valuable platform for the production of therapeutic and industrially relevant recombinant proteins in shorter time periods with significant yields.

7.
Virology ; 546: 51-66, 2020 07.
Article in English | MEDLINE | ID: covidwho-26738

ABSTRACT

Overlapping genes originate by a mechanism of overprinting, in which nucleotide substitutions in a pre-existing frame induce the expression of a de novo protein from an alternative frame. In this study, I assembled a dataset of 319 viral overlapping genes, which included 82 overlaps whose expression is experimentally known and the respective 237 homologs. Principal component analysis revealed that overlapping genes have a common pattern of nucleotide and amino acid composition. Discriminant analysis separated overlapping from non-overlapping genes with an accuracy of 97%. When applied to overlapping genes with known genealogy, it separated ancestral from de novo frames with an accuracy close to 100%. This high discriminant power was crucial to computationally design variants of de novo viral proteins known to possess selective anticancer toxicity (apoptin) or protection against neurodegeneration (X protein), as well as to detect two new potential overlapping genes in the genome of the new coronavirus SARS-CoV-2.


Subject(s)
Betacoronavirus/genetics , Evolution, Molecular , Genes, Overlapping , Genes, Viral , Algorithms , Amino Acid Sequence , Base Sequence , Computational Biology , Computer Simulation , Discriminant Analysis , Least-Squares Analysis , Principal Component Analysis , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL